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France
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Abstract. Motivated by certain problems of statistical physics, we consider a stationary stochastic
process in which deterministic evolution is interrupted at random times by upward jumps of a fixed
size. If the evolution consists of linear decay the sample functions are of the ‘random sawtooth’
type and the level-dependent persistence exponentθ can be calculated exactly. We then develop
an expansion method valid for small curvature of the deterministic curve. The curvature parameter
g plays the role of the coupling constant of an interacting particle system. The leading-order
curvature correction toθ is proportional to∼g2/3. The expansion applies in particular to exponential
decay in the limit of large level, where the curvature correction considerably improves the linear
approximation. The Langevin equation, with Gaussian white noise, is recovered as a singular
limiting case.

1. Introduction

In this paper we study the stationary stochastic processξ(t) that obeys the equation

dξ(t)

dt
= −A(ξ) + a

∑
`

δ(t − t`). (1)

Here a is a positive parameter and thet` are random times distributed independently and
uniformly with densityρ; the random term therefore represents white noise, but with a nonzero
average equal toρa. Henceξ(t) evolves deterministically except for upward jumps of fixed
sizea occurring at random times. We take the systematic ‘force’A(ξ) such that it has positive
derivative and satisfiesA(−∞) < ρa < A(∞), which ensures thatξ possesses a stationary
distribution. A special case is the linear equation obtained for the choiceA(ξ) = βξ . Our
interest is in the first passage time problem associated with a pre-established thresholdξ = X.

More precisely, for some general stationary processξ(t), letQ(T ) be the probability that
during a time interval of lengthT it stays above a thresholdX, given that it was larger thanX
at the beginning of that interval. For many of the common processes in physicsQ(T ) decays
to zero exponentially with aninverse relaxation timeθ defined by

θ = lim
T→∞

T −1 logQ(T ). (2)

BothQ(T ) andθ depend on the threshold valueX.
The interest of physicists in persistence problems originally arose when they studied

models [1–4] of phase ordering [5] by domain formation after a system is quenched to a
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subcritical temperature, and when the question arose how often a given physical point of the
system changes of domain. In that problem, after an appropriate rescaling of variables,θ

appears as the exponent of a power law and is called thepersistence exponent. It was remarked
by Majumdaret al [6] that persistence exponents may also be defined for systemsat their
critical point, and that these exponents are unrelated, in general, to the well known static and
dynamic critical exponents. All these reasons have spurred theoretical physicists in recent
years to attempt to calculate persistence exponents associated with the prominent problems of
their discipline. The exponents are in each case nontrivial and very hard, if not impossible, to
calculate analytically.

Many authors have studied processes of zero average and symmetric under sign change
of ξ . The quantity of primary interest is then ‘the’ persistence exponent associated with
the thresholdX = 0. For nonzeroX one also speaks of thelevel exponents. A review of
earlier work, mainly mathematical, was made by Blake and Lindsay [7]. Majumdar [8] and
Godr̀eche [9] have provided useful reviews of recent work, mainly by physicists. Almost all of
this work deals with processesξ(t) that are Gaussian. Among these, the Gaussian Markovian
ones are the easiest to treat. Majumdar and Sire [10], followed by Oerdinget al [11] and Sire
et al [12], have designed a perturbative method for processes that are Gaussian and close to
Markovian. This expansion was applied to persistence exponents for fluctuating interfaces by
Krug et al [13]. Majumdar and Bray [14] have set up anε expansion for smooth Gaussian
processes in spatial dimensiond = 4− ε. Nontrivial persistence exponents have also been
identified for such familiar functions as the solution of the diffusion equation with random
initial condition [15–18]. The idea ofpersistent large deviationshas been emphasized and
developed by Godrèche and co-workers [19,20].

In physical systems the cumulative effect of many degrees of freedom very often leads to
Gaussian processes. This explains and justifies the heavy emphasis on such processes in all
preceding work on persistence. Gaussian processes have, moreover, the advantage of being
easy to manipulate analytically. In this paper we leave the realm of Gaussian processes and
address the hard problem of studying the level exponents for the strongly non-Gaussian case
of (1). This is, to our knowledge, the first serious attempt to determine persistence properties
of a nontrivial non-Gaussian process. The mathematics turns out to be rather formidable.

Non-Gaussian processes closely related to (1) arise naturally in physics. Typically, that
happens in situations where coalescence may occur between entities (domains, clusters, etc)
of comparable size.

Instances are furnished by statistical physical models that exhibit cluster growth, such as
random sequential absorption and percolation theory; ifξ(t) is the suitably scaled size of a
particular cluster, then jumps are due to coalescence with other clusters. As a specific example,
let the bonds of a lattice be rendered percolating in a sequential manner [21] and lett̃ be the
instantaneous fraction of percolating bonds; then defineξ̃ (t̃ ) as the size of the cluster connected
to the origin. In spatial dimension one it is easily shown [22] that an appropriate scaling (which
is such thatt →∞ ast̃ → 1) again yields a stationary processξ(t) with a probablity law for
the jump sizes.

An example of a different kind is provided by a question [23] associated with the one-
dimensional random walk. Let̃ξ(t̃) be the number of steps needed before the walk has
visited t̃ distinct sites. Thenξ(t) ≡ e−t ξ̃ (e2t ) is a stationary process consisting of exponential
decay interrupted by upward jumps. The only difference from equation (1) is that it leads
to a probability distribution of the jump sizes, whereas in (1) we takea a fixed parameter.
Numerical evidence shows that this problem possesses well-defined persistence exponents,
but, as in many other cases, there is no known way to find them analytically.
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In order to study the persistence exponents associated with (1) we exploit the following
idea. The persistence probabilityQ(T ) is determined by the subclass ofξ(t) that do not cross
X from above for 0< t < T . When the forceA(ξ) is strongly positive, then aξ(t) in the
contributing subclass is unlikely ever to rise very high above the thresholdX. We conjecture,
therefore, that we will obtain a good description of this subclass by expandingA(ξ) around the
threshold valueξ = X. We convert this idea into an expansion procedure. Roughly speaking,
the zeroth and the first order of the expansion are determined byA(X) andA′(X)/A(X),
respectively, i.e. by the slope and the curvature/(slope)2 ratio of the deterministic evolution
curve. The precise mathematics is slightly more subtle and shows that instead two parameters
appear, calledr andg, whose definition is more complicated. Our theory then yields the level
exponentsθ in terms ofr andg in the smallg limit. We shall refer tog as thecurvature
parameter.

In section 2 we writeQ(T ) as a path integral on all contributingξ(t). The expression
resembles the partition function of a system of interacting particles in a one-dimensional
volumeT , with the jump timest1, t2, . . . in the role of the particle positions. We rearrange
the path integral in such a way that a ‘noninteracting’ contribution appears, characterized by
a parameterr, and a remainder due to an ‘interaction potential’V which is a functional of the
jump times. Our use of the term ‘noninteracting’ does not mean that theV = 0 problem is
trivial—it is not—but merely that it is purely combinatorial. We are led to define the parameter
r of the noninteracting theory by

r = ρ
∫ X+a

X

dξ

A(ξ)

= ρa

A(X)

(
1− aA

′(X)
2A(X)

+ · · ·
)
. (3)

This equation shows thatr involves not onlyA(X) but also the full series of its derivatives.
In section 3 we consider the zeroth order,V = 0. This amounts to replacingA(ξ) in (1)

by the constantρa/r, so that as a consequenceξ(t) is piecewise linear with slope−ρa/r. All
samples of this zeroth-order process are therefore ‘random sawtooth’ functions. In this order
we shall write the level exponent asθ0(X). We find

θ0(r) = ρ
(

1

r
log

1

r
− 1

r
+ 1

)
0< r < 1. (4)

Forr → 1 the persistence exponent goes to zero; the interpretation of this unphysical effect is
that forr > 1 the linearization creates a finite probability forξ(t) to escape to +∞.

In section 4 we consider the interacting theory,V 6= 0. The potentialV is determined by
A in a way described in that section. We are unable to deal with the general case. Instead, we
expandV in a series of which we retain only the first term, whose coefficientg plays the role
of an interaction constant. The expression forg is

g = A(X + a)− A(X)
A(X)

= aA′(X)
A(X)

(
1 +

aA′′(X)
A(X)

+ · · ·
)
. (5)

We show that there are at least two limits in which the higher-order terms in the series forV

are negligible, and in which the remaining problem, with only two parametersr andg, can be
solved.

Sections 4.2 and 4.3 are common to both limits. The Laplace transformK(�) of the
path integral forQ(T ) appears to satisfy a recursion relation whose solution is expressed in
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equation (50) as the ratio of two infinite series. Explicit evaluation of these series turns out to
be a rather formidable task. The soluble limits are the following.

Limit (i). The limit g → 0 at r fixed. Equations (3) and (5) show that this corresponds
to A′(X) → 0 at fixedA(X). In section 4.4 we calculate the exponentθ(r, g) in a smallg
expansion, with the result that a nonanalytic correction term to (4) appears,

θ(r, g) = θ0(r) + ρ
1

2r

(
log

1

r

)2/3(9π

4
g

)2/3

g→ 0 r fixed. (6)

Limit (ii). The limit g→ 0, r → 0 with fixed ratiog/r. Equations (3) and (5) show that this
corresponds toA(X)→∞ at fixedA′(X). In this limit the expansions in (3) and (5) may be
replaced by their first term, which we shall denote by an index 0,

r0 = ρa

A(X)
g0 = aA′(X)

A(X)
. (7)

This limit, considered in section 4.5, requires separate analysis; nevertheless, the result for
θ(r, g) is what one also obtains by naively substitutingr = r0 andg = g0 in (6).

The example of greatest interest is the linear equation that prevails for the choice
A(ξ) = βξ . When the thresholdX becomes large we haver0 = ρa/βX andg0 = a/X. Upon
expressing for this caseθ as a function ofX we arrive at the explicit asymptotic expansion

θ(X) = θ0

(
ρa

βX

)
+
β

2

(
9π

4

)2/3(
βX

ρa

)1/3(
log

βX

ρa

)2/3

+ · · · X→∞. (8)

In section 5 we compare analytical results for both limit cases to Monte Carlo simulations
of (1). Excellent agreement is found. In particular, there is strong numerical indication that
the higher-order terms in the asymptotic expansion (8) go to zero asX→∞.

The nameLangevin equationis traditionally reserved for equations of type (1) where
the random term represents Gaussian white noise. In section 6 we observe that the white
noise of equation (1) becomes Gaussian in the limitρ →∞ anda→ 0 at fixedρa2, and that,
correspondingly (and after appropriate rescaling of variables) (1) becomes a Langevin equation.
Hence our work enables us to pass continuously from strongly non-Gaussian to Gaussian
noise. In section 6.1 we place ourselves directly in the Gaussian limit and determine, via the
associated Fokker–Planck equation, the Gaussian persistence exponentθG for asymptotically
high threshold; our method is close to the one of Krapivsky and Redner [24]. In section 6.2
we then investigate how the Gaussian limit emerges from the more general approach of
sections 2–5.

Section 7 contains our conclusions.

2. Phase space integral

2.1. Solutionξ(t)

The solution of (1) is piecewise continuous. In the time interval between two jumpsξ(t)

evolves deterministically according to

ξ(t) = f (t − u`) t`−1 < t < t` (9)

whereu` determines a shift along the time axis and the functionf (t), if we choose it such that
f (0) = X, is obtained fromA(ξ) by

t = −
∫ f (t)

X

dξ

A(ξ)
. (10)
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Henceu` acquires the meaning of the ultimate instant of time at which the`th jump should
take place ifξ(t) is to stay above the threshold. The fact that there is a jump of sizea on the
border between two successive time intervals leads to the identity

f (t` − u`+1)− f (t` − u`) = a. (11)

We shall be more specific now and consider the solutionξ(t) of (1) with initial value
ξ(0) = ξ0. It is uniquely specified by the set of jump times 0< t1 < t2 < · · ·. Equation (11),
which is here valid for̀ = 1, 2, . . . , allows one to expressu`+1 in terms oft` andu`, and,
upon iterating, as a function oft1, . . . , t` andu1. Finally, u1 may be eliminated in favour of
the initial valueξ0 by means off (−u1) = ξ0. Hence we have obtained the formal answer to
the question of how to findu` as a function of the random jump times and the initial condition.
Below it will be convenient to uset0 ≡ 0 andu0 ≡ 0; with that convention equation (11) holds
also for` = 0 if we take the special initial conditionξ0 = X + a.

2.2. Basic integral

The persistence probabilityQ(T ) can be expressed as a path integral on all random functions
ξ(t), hence as an integral on all jump timest1, t2, . . . . It is now useful to note that theu` are
ordered according to 0= u0 < u1 < u2 < · · ·, so that there exists anL > 0 for which

uL < T < uL+1. (12)

The interpretation is that after theLth jump the functionξ(t) is sure to stay above the threshold
X, even if no further jumps occur, in the interval [0, T ]. Summing on all possibilities implied
by (12) we can writeQ(T ) as

Q(T ) =
∞∑
L=0

ρL
∫ u1

0
dt1

∫ u2

t1

dt2 . . .
∫ uL

tL−1

dtLe−ρtL2(T − uL)2(uL+1− T ) (13)

where2 is the Heaviside step function and where we used thatρLe−ρtL is the joint probability
density for the firstL jumps to occur att1, t2, . . . , tL. TheL = 0 term in (13) has no integrals
and is equal to2(u1− T ). In the remainder we will use the shorthand notation∫

0
= 1

∫
`

= ρ`
∫ u1

0
dt1

∫ u2

t1

dt2 . . .
∫ u`

t`−1

dt` ` = 1, 2, . . . . (14)

The expression (13) forQ(T ) bears great similarity to the grand-canonical partition function
of an assembly of interacting particles in a one-dimensional volumeT , with the jump times
t1, t2, . . . playing the role of the particle positions and with the interaction implicit in the upper
integration limitsu1, u2, . . . .

In terms of Laplace transforms equation (13) is equivalent to

Q̂(ω) ≡
∫ ∞

0
dT e−ωTQ(T )

= ω−1
∞∑
L=0

∫
L

e−ρtL(e−ωuL − e−ωuL+1). (15)

One more rewriting is useful. ForL > 1 one easily finds the relation∫
L

e−ρtL−ωuL =
∫
L−1

e−ρtL−1−ωuL −
∫
L−1

e−(ρ+ω)uL . (16)

When equation (16) is substituted in (15), cancellations occur. After we replaceω with the
dimensionless variable

� = ρ + ω

ρ
(17)
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we can express the problem by the three equations

ωQ̂(ω) = 1−K(�) (18)

K(�) =
∞∑
L=0

KL(�) (19)

KL(�) =
∫
L

e−�ρuL+1 L = 0, 1, . . . (20)

of which the last one implies, in particular, thatK0(�) = e−�ρu1. Our task is to evaluate the
phase space integral

∫
L

in (20) and to find the relevant nonanalyticity ofQ̂(ω). In terms of the
Laplace variableω the persistence exponentθ will be given by

θ = −ω1 = −ρ(�1− 1) (21)

whereω1 is the real part of the rightmost nonanalyticity ofQ̂(ω) in the complexω plane, and
�1 is the corresponding value of�. Any further nonanalyticities at�2, �3, . . . will similarly
give rise to correction terms in the decay ofQ(T ) characterized byθ2, θ3, . . . .

2.3. Interaction potentialV (y)

At this stage the problem is to calculateKL of (20), defined as an integral via (14), in
which the upper integration limitsu` are defined recursively via (11). This problem depends
parametrically on the functionA(ξ) or, equivalently, onf (t), and on the thresholdX. We can
still gain by transforming to another set of parameters. That will be the purpose of this section.

Each jump provides the process with an additional lapse of time before hitting the
threshold. The extra time furnished by the`th jump isu`+1 − u`. The negative slope of
f restrictsu`+1 − u` to a maximum value that we shall callτ and which occurs fort` = u`.
Using this in equation (11) we see thatτ is the solution of

f (−τ)− f (0) = a (22)

where, of course,f (0) = X. The`th jump will generally take placebeforerather thanat the
ultimate instantu`. Due to the upward curvature off the actual extra time gained is therefore
generally less thanτ . We will express this curvature effect explicitly in terms of a variablev`
by setting, for̀ = 1, 2, . . . ,

u`+1− u` = τ − v` (23)

whence necessarily 0< v` 6 τ . We now use this equation in (11) to eliminateu`+1 and we
then subtract equation (22). This gives

f (t` − u` − τ + v`)− f (t` − u`)− f (−τ) + f (0) = 0 (24)

from whichv` can be solved in terms ofu`− t`. Although the jump densityρ does not appear
in the above equation, it will turn out to be convenient to write the solutionv` in the scaled
form

ρv` = V (ρ(u` − t`)) (25)

in whichV has the expansion

V (y) = τ
∞∑
k=1

gky
k. (26)

It is easily seen that in accordance with (24) one hasv` = 0 whenu` − t` = 0. One obtains
from (24) an equation forgk in terms ofg1, . . . , gk−1 by differentiatingk times with respect
to u` − t` and settingu` − t` = v` = 0. This yields for the first two coefficients

g1 = f ′(−τ)− f ′(0)
τf ′(−τ) g2 = f ′′(0)

2ρτf ′(−τ) −
f ′(0)2f ′′(−τ)
ρτf ′(−τ)3 . (27)
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We emphasize that we do not supposeτ small. In cases where the limitτ → 0 may be taken,
obvious simplifications occur.

We continue now the analysis of the integral (20) forKL. This analysis may be performed
for general initial conditionξ0; however, from here on we shall imposeξ0 = a, whenceu1 = τ ,
in order to have simpler expressions, knowing that the persistence exponent will not depend
on ξ0. We will briefly come back to this point after equation (51). It is useful to define
r = ρτ , which, by (22) and relation (10) betweenA andf , is equivalent to equation (3) of
the introduction. Rewriting (20) in terms of the new integration variablesy` = ρ(u`− t`) and
using (23) iteratively to expressuL+1 in terms of they` we find, forL = 1, 2, . . . ,

KL(�) = e−(L+1)�r
∫ W(y0)

0
dy1e�V (y1)

∫ W(y1)

0
dy2e�V (y2) . . .

∫ W(yL−1)

0
dyLe�V (yL) (28)

where we have abbreviated

W(y) = r + y − V (y) (29)

and, by convention, puty0 = 0. A special case isK0(�) = e−�r . We have now transformed
the phase space integral forKL to a problem depending on the parameterr and the interaction
potentialV (y). The original parametersX, a, and the functionA(ξ) (or, equivalently,f (t))
no longer appear.

3. Noninteracting theory: V = 0

The noninteracting case is obtained by settingV = 0 in the preceding development. Strictly
mathematically it is not needed to study this case before passing to the next sections. However,
from a physical point of view it is highly desirable to have a good idea of the noninteracting
system before introducing interaction.

ForV = 0 the theory depends on the single parameterr. Correspondingly, all derivatives
of f (t) beyond the first one vanish andf (t) is given by

f (t) = X − f ′(0)t. (30)

We shall denote quantities referring to this linear decay curve by an index 0. When combining
the above expression forf (t) with (22) and the definitionr = ρτ we find that in this
noninteracting caser is given by

r0 = ρa

f ′(0)
(31)

which is an instance of (7) withg0 = 0.

Combinatorial problem. Having thus found the parameters of the noninteracting problem,
we have to substitute them in the general expression (28) forKL(�). Imposing as before the
initial valueξ0 = X + a we obtain, after changing to the integration variablesx` = y`/r0,

KL(�) = e−(L+1)�r0rL0

∫ 1+x0

0
dx1

∫ 1+x1

0
dx2 . . .

∫ 1+xL−1

0
dxL (32)

wherex0 = 0. TheL-fold integral in the above equation, that we shall refer to asIL, constitutes
the heart of the problem. In terms of the analogy with anL particle system thex` are the
particle positions. There is no energy associated with the allowed configurations(x1, . . . , xL),
and logIL is the entropy of the system.

Upon converting to the integration variabless` = `− x`, where` = 1, . . . , L, we have

IL =
∫ 1

0
ds1

∫ 2

s1

ds2 . . .
∫ L

sL−1

dsL. (33)
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The same integral but with all upper integration limits set equal toL + 1 is elementary and
equals(L+1)L/L!. It represents the phase space volume for puttingL points on(0, L+1], not
counting permutations as distinct. HenceIL = [(L + 1)L/L!]pL, wherepL is the probability
thatL randomly chosen points on(0, L + 1] are such that, fork = 1, . . . , L, the numberMk

of points in the interval(L + 1− k, L + 1] is less thank.
This may still be rephrased as the following nonelementary combinatorial problem. Let

L balls be put randomly inL + 1 numbered vases; thenpL is the probability that the firstk
vases contain together at leastk balls, fork = 1, 2, . . . , L.

We found no direct way to calculatepL and invoke a theorem due to Takács, of which we
adapt the proof to the present context in the appendix. The result is thatIL = (L + 1)L−1/L!.

Persistence exponent.Using this in equation (32) and substituting in (19) we have

K(�) =
∞∑
L=0

e−(L+1)�r0rL0
(L + 1)L−1

L!

=
∞∑
L=0

e−L(�r0−logr0−1)+O(logL) (34)

where in the last step we have used Stirling’s formula. It is clear that as� is lowered,K(�)
diverges when� attains a value that we shall call�0 and which is given by

�0(r0) = − 1

r0
log

1

r0
+

1

r0
. (35)

Because of equations (17) and (21) the persistence exponent is

θ0 = ρ
(

1

r0
log

1

r0
− 1

r0
+ 1

)
. (36)

Converted to the original variables of the problem this becomes equation (4) of the introduction.
This exponent may also be arrived at in ways independent of the recursion relation formalism
of this work (e.g., with the aid of the method of [19], appendix A), and appears in other contexts
as well (e.g., the recent work of Baueret al [26]). It will appear again in the next section at
the end of a very different calculation.

4. Interacting theory: V > 0

4.1. Small curvature limit

The interacting theory hasV > 0 in equations (28) and (29). We will not be able to treat the
general case, but only the one in which the series (26) forV (y) is dominated by its linear term.
Curiously enough, although we have to supposeV small and although our final results for
the exponentθ will be perturbatively close to the zeroth-order expression (36) of the previous
section, the solutionmethodof the present section isnonperturbativein the sense that we do
not start from theV = 0 solution, and that in the limitV → 0 the method of this section
ceases to work.

The linear term dominates the series (26) forV (y) in particular in the following two limits:
(i) g→ 0 at fixedr, with τg1 = g andτgk = o(g) for k = 2, 3, . . . ;
(ii) g→ 0 andr → 0 with a fixed ratiog/r = c.
In both limits the curvature parameterg tends to zero, and we shall refer to them as

instances of asmall curvature limit. The developments of the next two sections are common to
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both limits. We setg ≡ τg1, which, by (27) and relation (10) betweenA andf , is equivalent
to equation (5) of the introduction. Retaining only the linear term inV we get

V (y) = gy W(y) = r + (1− g)y. (37)

Hence we have a theory with two dimensionless parameters,r and g; for g = 0 the
noninteracting theory is recovered.

In the developments that follow, the higher-order terms, suppressed in (37), may be taken
into account perturbatively to show that their effect is negligible to leading order. Throughout
this section, the discussion will be only in terms of the interaction constantsr andg, that we
shall consider as independent parameters. In section 5 we will return to the original variables
of the problem.

4.2. Recursion forK(�)

If equation (37) is substituted in (28), it becomes possible to carry theL integrals out recursively
for arbitraryg, as we shall show now. It appears that one needs auxiliary functionsK

(n)
L and

K(n) with n = 0, 1, 2, . . . . These are defined by

K(n)(�) =
∞∑
L=0

K
(n)
L (�) (38)

in which forL = 1, 2, . . .

K
(n)
L (�) = e−[L+(1−g)n]�r

∫ r+(1−g)y0

0
dy1e�gy1 . . .∫ r+(1−g)yL−2

0
dyL−1e�gyL−1

∫ r+(1−g)yL−1

0
dyLe�[1−(1−g)n+1]yL (39)

and where we have the special case

K
(n)
0 (�) = exp[−�r(1− g)n]

≡ En. (40)

When (37) is substituted in the functionsK andKL of the preceding section, one sees
that K = K(0) andKL = K

(0)
L . Upon carrying out in (39) the integral onyL we find

straightforwardly the recursion relation

K
(n)
L = bn[K(n+1)

L−1 −KL−1] (41)

where

bn = 1

�

e−�r(1−g)
n

1− (1− g)n+1
. (42)

Equation (41) is valid forL = 1, 2, . . . andn = 0, 1, . . . , and must be supplemented with the
boundary condition (40) atL = 0. Substitution of equations (40) and (41) in (38) yields for
theK(n) the recursion relation

K(n) = bn[K(n+1) −K] + En. (43)

The existence of this recursion relation is the key to the success of the present method. We
remark that forg = 0 the coefficientsbn are undefined and the recursion does not exist; hence
this solution method isnonperturbative.

If we apply (43) toK = K(0) and iteraten times, the result is

K(�) = (B0E0 +B1E1 + · · · +BnEn)
−(B1 +B2 + · · · +Bn+1)K(�) +Bn+1K

(n+1)(�) (44)
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where we abbreviated

B0 = 1 Bn =
n−1∏
j=0

bj n = 1, 2, . . . . (45)

We examine nowbn, Bn, andEn for n→∞. Equations (40), (42), and (45) show that in that
limit

b∞ = �−1 Bn ' 5∞�−n E∞ = 1 (46)

where

5∞ =
∞∏
j=0

e−�r(1−g)
j

1− (1− g)j+1
. (47)

Hence forn→ ∞ we obtain from (43) an equation forK(∞) with well-defined coefficients.
Using (46) one readily finds the solution

K(∞)(�) = E∞ − b∞K(�)
1− b∞ = �−K(�)

�− 1
. (48)

For n → ∞ we now replaceK(n+1) in (44) byK(∞) found in (48). Upon solving forK(�)
we get

K(�) = lim
n→∞

B0E0 +B1E1 + · · · +BnEn + [Bn+1/(1−�−1)]

B0 +B1 + · · · +Bn + [Bn+1/(1−�−1)]
(49)

=
∑∞

n=0BnEn∑∞
n=0Bn

|�| > 1 (50)

in whichEn is given by (40) and where from equations (45) and (42) we haveB0 = 1 and

Bn = 1

�n
exp

[
−�r 1− (1− g)n

g

] n∏
j=1

1

1− (1− g)j n = 1, 2, . . . . (51)

Expression (50) constitutes the solution of the problem of this work; the remaining analysis is
needed to extract the persistence exponentθ from it. Equation (50) holds for the initial condition
ξ0 = X + a; without giving the proof we state that for generalξ0 the same expression (50) is
obtained except that in the definition (40) of theEn one should replacer byρu1 and remember
thatf (−u1) = ξ0.

By (21) we haveθ = −ρ(�1 − 1), where�1 is the rightmost nonanalyticity ofK(�)
in the complex� plane. We expect the relevant nonanalyticities to be due to zeros of the
denominator of (50), for which we shall introduce the special notation

H(�; r, g) =
∞∑
n=0

Bn. (52)

In view of the remarks of the preceding paragraph this denominator is independent of the initial
conditionξ0. Obviously its zeros can occur only for� < 0. It is furthermore clear in advance
that forg > 0 the persistence probability must decay at least as fast as forg = 0, whence
θ(r, g) > θ(r, 0) = θ0(r). Consequently we expect that�1 6 �0(r), where�0 is the function
defined in (35).
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4.3. Analysis ofK(�)

We shall evaluateH(�; r, g) asymptotically in the two limitsg→ 0 at fixedr, andg, r → 0
at fixedg/r. In order to prepare for these limits we will transform the sum onn in (52) into a
contour integral, to which we shall then apply the stationary phase method.

It is first of all necessary to extend the definition of the summandBn to arbitrary complex
n. To that end we consider the function

0g(z) =
∏∞
j=1(1− (1− g)j )∏∞

j=1(1− (1− g)z−1+j )
(53)

which on the positive integers reduces to

0g(n) =
n−1∏
j=1

(1− (1− g)j ) n = 2, 3, . . . (54)

and0g(1) = 1. This function0g(z) was introduced in 1847 by Heine (see [27]); nowadays it
is usually defined [27] with an extra factorg1−z on the rhs of (53), and then called theq-gamma
function, whereq = 1− g. The function0g(z) of (53) has various properties reminiscent
of the ordinary gamma function. In particular, it has poles forz = 0,−1,−2, . . . , and the
residueRm in z = −m is equal to

Rm = (−1)mg−1(1− g) 1
2m(m−1) 1

0g(m + 1)
m = 0, 1, 2, . . . . (55)

We can now expressH of (52) with theBn of equation (51) as

H(�; r, g) = g

2π i

∫
C

dzeh̃(z,�) (56)

in which

h̃(z,�) = z log(−�)−�rg−1[1− (1− g)−z] − 1
2z(z + 1) log(1− g) + log0g(z) (57)

and where the integration path encloses the poles of0g(z). Equivalently, we may let this path
run from−∞ to 0 below the real axis, encircle the origin counterclockwise, and run from 0
back to−∞ above the real axis. The poles inside this contour exactly generate the terms of
the series in (52). A factor(−1)n coming from(−�)n cancels against the(−1)n fromRn.

4.4. Limitg→ 0 at fixedr

If one now scales withg according toν = gz and writes

h̃(z,�) = 1

g
h(ν,�; g) (58)

then the limiting function limg→0 h(ν,�; g) ≡ h(ν,�) exists and is equal to

h(ν,�) = ν log(−�)−�r(1− eν) + 1
2ν

2 +
∫ ν

0
dµ log(1− e−µ). (59)

The poles having become dense, this function has a branch cut along the negative real axis in
the complexν plane.
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Stationary points. In the limit g→ 0 we may apply the stationary phase method. It appears
thath(ν,�) has two stationary pointsν±(�). There is a critical value�c such that for� > �c
the ν± are real and positive, and for� < �c they are complex conjugate. At�c we have
ν− = ν+ ≡ νc. The values�c andνc are the solution of

hν(νc,�c) = 0 hνν(νc,�c) = 0 (60)

where the indices onh indicate derivatives. These solutions are easily found and read

�c = −1

r
log

1

r
+

1

r

νc = − log

(
1 +

1

logr

)
.

(61)

We see that�c(r) = �0(r), which establishes the relation of this nonperturbative calculation
with the solution of the noninteracting theory given in section 3. The analysis can be refined
in the vicinity of (νc,�c). Upon performing a double Taylor expansion in

1ν = ν − νc 1� = �−�c (62)

we find, in obvious notation,

h(ν,�) = h(νc,�c) +1�h� +
1

2
1�2h�� +1ν1�hν� +

1

3!
1ν3hννν + · · · (63)

where all derivatives are evaluated at(νc,�c), we have used thathν = hνν = 0, and the dots
indicate the remaining third- and the higher-order terms. The derivatives that it will be useful
to know explicitly are

hν� = r hννν = − log2 r h� = −r
(

log

(
1 +

1

logr

))
(1 + logr)−1. (64)

The stationary point condition∂h/∂1ν = 0 applied to (63) now shows that1ν has to scale
as1�1/2 and we find

ν±(�) = νc ∓ 1

logr
(2r1�)1/2. (65)

The stationary point integrations are easily carried out. For1� > 0 the relevant stationary
point isν− and the outcome of the integration is positive. For1� < 0 the complex conjugate
points both contribute and the result is

H(�; r, g) = 2H0(�; r, g) cos

(
1

g

(
8h3

ν�

9hννν
1�3

)1/2

+
π

4

)
(66)

whereH0(�; r, g) is positive and where it should be remembered thathννν and1�are negative.

Zeros ofH(�; r, g). Upon substituting in (66) the explicit expressions (64) for the derivatives
of h we see that the functionH has zeros for� = �j with

�j = �c − 1

2r

(
log

1

r

)2/3(
(4j − 1)

3π

4
g

)2/3

j = 1, 2, . . . . (67)

Forj = 1 we obtain the rightmost singularity ofK(�) in the complex� plane. Hence by (21)
we obtain for the persistence exponentθ the result

θ ' θ0(r) + ρ
1

2r

(
log

1

r

)2/3(9π

4
g

)2/3

r fixed g→ 0 (68)

with the functionθ0 given by (36). When reconverted to the original variables this gives the
result announced in the introduction. The second term on the rhs of (68) represents the leading-
order curvature correction to the persistence exponent. It is nonanalytic at zero curvature.
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4.5. Limitg, r → 0 with fixed ratiog/r

We setg = cr. This limit requires an independent evaluation starting from equations (56)
and (57). The critical point(νc,�c) is still given by (61), but it appears necessary now to scale
the deviations from it as

1ν̄ = log2 1

r
1ν 1�̄ = r log2 1

r
1�. (69)

Setting for convenienceεr = 1/ log(1/r) and expanding inεr one finds, instead of (63), the
expression

h(ν,�) = h(νc,�c) + (ε3
r + 2ε4

r )1�̄ + ε4
r 1�̄1ν̄ −

1

3!
ε4
r 1ν̄

3 +O(ε5
r ) (70)

in which h(νc,�c) is itself of orderεr . The stationary point condition∂h/∂1ν̄ now leads
to1ν̄± = ∓(21�̄)1/2, which when the original scaling is restored is the same as (65). The
integration through the stationary point involves only the twoO(ε4

r ) terms in (70). In view of
the proportionality betweeng andr the curvature in the stationary point is in this case of order
(g log4 g)−1 instead ofg−1. After the calculation is done the expression forθ appears to be
exactly what one obtains by naively substitutingg = cr in (68), that is,

θ ' θ0(r) +
ρ

2

(
9π

4
c

)2/3 1

r1/3

(
log

1

r

)2/3

. (71)

Equations (68) and (71) constitute the main result of this section. In the following section
we shall compare them to direct Monte Carlo simulations of the processξ(t). The zeros
�2, �3, . . . , whose explicit expression is furnished by (67), lead to exponentially small additive
corrections to the leading decay ofQ(T ).

5. Examples

In the following applications we will start from functionsA(ξ) defining specific examples of
the Langevin-type equation (1).

First example. If in equation (1) we takeA(ξ) = βξ , the result is the linear equation

dξ(t)

dt
= −βξ + a

∑
`

δ(t − t`). (72)

The parametersr andg follow directly from equations (3) and (5), respectively, with the result

r = ρ

β
log

(
1 +

a

X

)
g = a

X + a
. (73)

AsX becomes large,r andg tend to zero simultaneously with the fixed limiting ratio

c = lim
X→∞

g

r
= β

ρ
. (74)

Hence we are in the situation of section 4.5. Equation (22) then leads toτ = β−1 log(1+a/X),
so that forX → ∞ we haveτ → 0; sincey in (26) is of orderτ , the series forV (y) is one
in ascending powers ofτ and we were justified in section 4.1 to neglect the nonlinear terms
in V (y). If we now substitute expression (73) forr andc in (71) and neglect subleading
terms in the curvature correction, we find the level exponentθ(X) given in equation (8) of the
introduction.

Monte Carlo simulation of the stochastic process of equation (72) was carried out as
follows. It is improbable forξ(t) to stay for a long timeT above a high thresholdX. Therefore,
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Figure 1. Persistence exponentθ as a function of the thresholdX for the processξ(t) of
equation (72) witha = 1, ρ = 10, andβ = 2. The average value of this process is〈ξ〉 = 5. The
error bars of the simulation data are smaller than the symbols. The interacting theory expanded to
leading order (solid curve, equation (8) of this work) is in excellent agreement with the simulations.

in order to generate many such rare events, we used a standard biased Monte Carlo procedure
in which the jumps are produced on the time axis with a densityρ∗ considerably larger than
ρ. A processξ(t) with L jumps in the time interval(0, T ) was weighted afterwards with
the theoretically known correction factor (namely, the ratio (ρ/ρ∗)Le(ρ

∗−ρ)T of two Poisson
distributions with averagesρT andρ∗T ) to undo the bias. The Monte Carlo result for logQ(t)
on the interval(0, T ) is in good approximation a straight line (except at very short times,
t . ρ−1, where some structure appears, and at large times, where it is too noisy), which leads
to an estimate forθ(X).

We have determined the persistence exponentθ(X) for X ranging from the average
〈ξ〉 = ρa/β up to eight times that value. Figure 1 shows the Monte Carlo data forθ(X)

along with the theoretical result, equation (8), for asymptotically largeX. There are no
adjustable parameters. The dashed curve (‘free theory’) represents only the first term on the
RHS of (8); the solid curve (‘interacting theory’, full equation (8)) includes the leading-order
curvature correction, which is the main result of this work. This correction appears to be an
important effect. The excellent agreement between the interacting theory and the simulation
data strongly suggests that higher-order corrections to equation (8) vanish forX→∞.

Figure 2 shows a zoom on valuesX & 〈ξ〉; the leading-order behaviour of the interacting
theory (solid curve) still represents a considerable improvement over the free theory, but as
X → 〈ξ〉, higher orders in the expansion become necessary. ForX < 〈ξ〉 the expansion of
this work does not apply.

Second example.LetA(ξ) be such that for some small parameterε

A(ξ) = A(εξ). (75)

Equation (10) may then be recast in the form

εt = −
∫ εf (t)

εX

dx

A(x)
(76)
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Figure 2. As figure 1, zoomed on thresholdsX close above the average〈ξ〉 = 5.

whence it follows thatf (t) scales as

f (t) = ε−1F(εt; εX). (77)

We have by constructionf (0) = X as before. Furthermore

f (n)(0) = εk−1F (k)(0; εX) (78)

where the differentiations ofF are with respect to its first argument. If now we agree to choose
X of orderε−1, then thekth derivative off is of orderεk−1. This guarantees thatgk is of order
εk, as is illustrated by (27) forg1 andg2. Hence the conditions of limit(i) are fulfilled and the
calculation of section 4.4 applies.

In order to test the nonanalytic dependence on the curvature parameterg in equation (68)
we have performed a Monte Carlo simulation ofξ(t) for the particular choice

f (t) = X − βt + εt2 (79)

that is,F(x, y) = x − βy + y2. The correspondingA follows from (76) and by means of
equations (75) and (5) we find

g = 1−
(

1 +
4εa

β2

)−1/2

. (80)

Simulations were carried out at fixeda andβ for various values ofε. In figure 3 we show the
persistence exponentθ as a function ofg, together with the theoreticalg2/3 law of equation (68).
The agreement is excellent.

6. Limit of Gaussian noise

The Langevin equation (with white Gaussian noise) and its extension to coloured Gaussian
noise are at the basis of much recent work on persistence: see, e.g., the recent review by
Majumdar [8]. There is a large body of knowledge today about the persistence properties of
such Gaussian Markovian processes, and a perturbative method around the Markovian case
has recently been devised by Majumdar and Sire [10] (see also Oerdinget al [11] and Sire
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Figure 3. Persistence exponentθ for fixed thresholdX as a function of the curvature parameterg

for the second example of section 5 witha = 1, ρ = 10, andβ = 20. The solid curve represents the
theoreticalg2/3 law (equation (68) of this work), which appears to provide an excellent description
of the data.

et al [12]). The equation of this work, equation (1), with jumps of arbitrary finite sizea,
provides, on the contrary, an example of strongly non-Gaussian noise. In this section we show
how fora→ 0 the Gaussian limit is approached. This limit, just as the one of zero curvature
considered in section 3, is a singular point in parameter space.

6.1. Gaussian persistence exponentθG

Let ζ(t) obey the linear Langevin equation

dζ

dt
= −βζ +L(t) (81)

whereL(t) is Gaussian white noise of average〈L(t)〉 = 0 and correlation

〈ζ(t)ζ(t ′)〉 = 0δ(t − t ′). (82)

The level exponentθG(Z) for this process, associated with the probability forζ(t) not to have
crossed a pre-established thresholdζ = Z in a time interval has not to our knowledge been
calculated in the literature. The related exponent associated with crossing upward through the
threshold has been considered by Krapivsky and Redner [24] (see also Turban [25]). It is easy
to findθG(Z) by a method similar to theirs, as we will show now. The probability distribution
P(ζ, t) for the process (81) evolves in time [28] according to the Fokker–Planck equation

∂P

∂t
= β ∂

∂ζ
ζP +

0

2

∂2

∂ζ 2
P. (83)

The persistence exponentθG is the eigenvalue of the slowest decaying mode forZ < ζ <∞
satisfing the boundary conditionP(Z, t) = 0. We setP(ζ, t) = P(ζ ) exp(−θGt). It is
well known that the equation forP(ζ ) can be transformed to the eigenvalue equation for the
quantum harmonic oscillator. This fact has been exploited in previous work [10, 12, 24] on
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persistence exponents. Here, in view of our interest in the intervalZ < ζ <∞ and the limit
of largeZ, we must transform

P̃ (ζ̃ ) = e
β

20 ζ
2
P(ζ ) (84)

with ζ̃ = λ1/6(
√

2β/0ζ − 2
√
λ) andλ = 1

2 + θG/β. Then P̃ (ζ̃ ) satisfies the eigenvalue
problem (

d2

dζ̃ 2
− ζ̃

(
1 +

1

4
ζ̃ λ−2/3

))
P̃ (ζ̃ ) = 0 P̃ (Z̃) = 0. (85)

In the limit of high thresholdZ we expectθG, and thereforeλ, to diverge. Hence in this limit(
d2

dζ̃ 2
− ζ̃

)
P̃ (ζ̃ ) = 0 P̃ (Z̃) = 0. (86)

The solution of equation (86) that vanishes forζ̃ → ∞ is the Airy function Ai(ζ̃ ). The
boundary condition Ai(Z̃) = 0 leads toZ̃ = a1, wherea1 = −2.3381. . . is the first zero of
Ai. This condition fixesθG in terms ofZ; upon expanding for largeZ one finds

θG(Z) = β2Z2

20
+ |a1|β 2

3

(
β2Z2

20

)1
3

+ · · · (Z→∞) (87)

which is the desired result.

6.2. Gaussian limit

6.2.1. Limiting procedure. In equation (1) we now substituteξ = ζ + ρa/β and
a
∑

k δ(t − tk)− ρa = L(t) and take the ‘Gaussian’ limit, defined as

ρ →∞ a→ 0 with 0 = ρa2 fixed. (88)

The result is that equation (81) appears. One easily verifies that〈L(t)〉 = 0 and that the
cumulants ofL, which forn = 2, 3, . . . are given by

〈L(t1) . . . L(tn)〉c = ρan
n−1∏
k=1

δ(tk − tk+1) (89)

vanish in the limit of equation (88) whenn > 3. HenceL(t) is Gaussian white noise. The
above transformation changes the thresholdX intoZ = X− ρa/β. One now expects that the
Gaussian persistence exponentθG(Z), found by direct calculation at the end of the previous
section, should also be accessible as a limiting case of our general approach. Naively, one
may attempt to obtainθG(Z) by taking the Gaussian limit, followed by the limitZ →∞, in
expression (68) forθ . After a short calculation that procedure leads to

θG(Z) = β2Z2

20
+

(
9π

8

)2
3

β
2
3

(
β2Z2

20

)1
3

+ · · · (Z→∞). (90)

This differs from the exact result, equation (87), only by the numerical value of the coefficient
of the subleading term; moreover, the difference ((9π/8)2/3 ' 2.3203. . . versus|a1| =
2.3381. . .) is only about 1%! Nevertheless, (87) is right and (90) is not. The rather obvious
reason is that the Gaussian limit (which impliesaZ → 0), followed byZ → ∞, does not
commute with the limit that was taken to arrive at (68) (namelyr, g → 0 at fixedr/g, which
impliesaZ→∞). In order to findθG(Z) within the formalism of the preceding sections it is
necessary to start again from the integral representation ofH(�; r, g) in (56). Below we will
see how to do that.
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6.2.2. Calculation ofθG. Let us considerH(�; r, g) of equation (56). In view of
equations (57)–(59) it is represented as an integral onν of the function exp(g−1h(ν,�)).
The Gaussian limit is controlled by the parametera, which should tend to zero. At fixed
0 = ρa2 andZ = X − ρa/β we find from (73) that in that limitg = γ a2 + O(a3) and
r = 1 − aγZ + O(a2) with γ = β/0. We recall now equation (21), which says that
θ = ρ(1− �1). Expectingθ to approach a finite limitθG, we set� = 1− a2W , whereW
is the appropriately scaled variable for the relevant region of the complex frequency plane.
Hence, if the rightmost zero ofH(�; r, g) in this plane occurs forW = W1, then

θG = lim
a→0

ρ(1−�1) = 0W1. (91)

Stationary points. As a preliminary we consider the stationary points ofh(ν,�). Expanding
the equation∂h/∂ν = 0 for smalla while anticipating that eν will be small we find that these
points are solutions of

−a2W + (1− aγZ)eν − eν − 1
2e2ν + · · · = 0 (92)

where the dots represent terms of higher order ina and eν . This shows that there exist solutions
with the scaling Reν± ∼ loga for a→ 0. Solving explicitly we obtain

eν± = aγZ
(
−1±

√
1− 2W

γ 2Z2

)
+O(a2). (93)

In the above expression there appears a critical value ofW equal toWc = 1
2γ

2Z2. For
W > Wc, which we expect to be the relevant regime, the stationary points therefore are
ν± = −A− iπ ± iµ∗ with

−A = log(a
√

2W) +O(a loga) µ∗ = arccos
γZ√
2W

+O(a). (94)

Instead of the variable of integrationν we will henceforth useµ defined by

ν = −A− iπ + iµ. (95)

We will not exploit directly, in what follows, our knowledge ofµ∗.

Gaussian limit. We considerh(ν,�) of equation (59) as a function ofµ. After some
calculation we find that for smalla

h(ν,�) = h(−A− iπ,�) + a2γ k(µ,W) +O(a3) (96)

with

γ k(µ,W) = −iWµ + γZ
√

2W(eiµ − 1)− 1
2W(e

2iµ − 1). (97)

In the limit a→ 0 the functionH(�; r, g) may therefore be rewritten as the integral

H(�; r, g) = D
∫

dµek(µ,W) (98)

with k(µ,W) given by (97) and whereD diverges whena goes to zero. However,Dwill divide
out in (50) against the same factor in the numerator ofK(�). This completes the Gaussian
limit. There is no small parameter left in the integral in (98).
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Limit of largeZ. This integral may be reduced to a more elementary one in the limit of large
thresholdZ. The reason is that then the relevant values ofW are close toWc. We adopt the
scaling

W = Wc(1 +wZ−4/3) = 1
2γ

2Z2(1 +wZ−4/3) (99)

which will be justified by the results. We now consider the full Taylor series inµ of k(µ,W).
Upon expanding each of its coefficients for largeZ and retaining only the leading term we get

k(µ,W) = −1

2
γwZ2/3iµ− 1

2
γwZ2/3 (iµ)

2

2!
− γZ2

∞∑
n=3

(2n−2 − 1)
(iµ)n

n!
. (100)

If now the integration variable is scaled according toµ = λ(γZ2)−1/3, then in the large-Z
limit all terms in equation (100) except those withn = 1 andn = 3 go to zero. We are left
with

H(�; r, g) ∼
∫

dλe−
1
2γ

2/3wiλ+ 1
6 iλ3

(a = 0;Z→∞) (101)

which is the integral representation of the Airy function. The only dependence left is on the
variablew. Let the rightmost zero ofH(�; r, g) in the complex frequency plane occur for
w = w1. We see now thatw1 is the solution of Ai(γ 2/3w1) = 0, whence

w1 = |a1|(20/β)2/3. (102)

Upon relatingw1 toW1 by equation (99) and using (91) we finally get the expression of (87)
for θG.

Discussion. It is instructive to return to the quantityµ∗ given by equation (94). The
two stationary points are separated by a distance 2µ∗, and substituting the various scaling
transformations we see that, asZ → ∞, they have in terms ofλ the finite distance
2λ∗ = 2γ 1/3w1/2. We now observe the mechanism that is at work here. In section 4, for
a finite, hence far from the Gaussian limit,H(�; r, g) is the sum of contributions from two
stationary points at infinite separation (∼g−1 with g→ 0) in theν plane; as the Gaussian limit
is approached, the two stationary points come within finite distance of one another, and their
contributions cannot be separated any longer. This ‘interaction’ between the stationary points
leads to the replacement of the cosine in (66) by the Airy function in (101), and finally affects
by about one per cent the coefficient of the subleading term of the persistence exponent.

7. Conclusion

Beside many Gaussian persistence problems, there are also non-Gaussian ones occurring in
statistical physics. We have pointed out and studied one class of such problems, associated
with the specific non-Gaussian stochastic process that satisfies equation (1). Its relation to
several questions in statistical physics has been indicated in the introduction. The sample
functions of this process are deterministic curves interrupted at random instants of time by
upward jumps. Among these, a zeroth-order subclass is constituted by ‘random sawtooth’
functions, characterized by linear decay with fixed slope. The persistence exponentθ0 of
this subclass is easy to find. We then perturb this zeroth-order problem by introducing in the
decay a small curvature of strength controlled by a parameterg. As a consequence we have
to deal with what is essentially a one-dimensional interacting particle system with coupling
constantg, and the mathematics becomes considerably more complicated. The case of greatest
importance covered by the present work is the linear equation, with exponential decay curve,



2012 O Deloubrìere and H J Hilhorst

that prevails forA(ξ) = βξ in equation (1). Our result for this case is an asymptotic expansion,
equation (8), of the persistence exponentθ(X) in the limit of high thresholdX.

The same equation for levelX = 〈ξ(t)〉, which is outside of the domain of the asymptotic
expansion of this work, has recently been considered by Deloubrière [22]. It would be of
definite interest to extend equation (1) torandomupward jumpsak at timetk, given that specific
distributions of jump sizesak naturally occur in several models of statistical physics [21,23].
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Appendix. A theorem by Takács

We consider the problem of determining the probabilitypL that occurs section 3. Let the
variablesMk be those defined there. It is natural to set in additionM0 = 0 andML+1 = L, so
that our problem is to find

pL = Prob{k −Mk > 0 for k = 1, . . . , L + 1}. (103)

Relevant to this problem is theorem 3 by Takács [29], which concerns nondecreasing
random functions on line segments. The author [29] indicates that this theorem has an analogue
valid for nondecreasing random sequences. For the present case the full proof runs as follows.

The range of the indexk may be extended to arbitrary positivek by the definition

ML+1+k = L +Mk. (104)

This amounts to repeating the set of random point on 0< s 6 L+1 periodically in the segments
n(L + 1) < s 6 (n + 1)(L + 1), wheren = 1, 2, . . . . The random variableMk+` −Mk, where
k = 0, 1, 2, . . . and` = 1, 2, . . . , represents the number of points in the intervalk < s 6 k+`,
and the probability distribution of this variable is obviously independent ofk. Let now for
k = 0, 1, 2, . . .

δk =
{

1 if Mk+` −Mk < ` for ` = 1, 2, . . .

0 otherwise.
(105)

Then the probability distribution ofδk does not depend onk, andδk+L+1 = δk. It is easy to verify
thatMk+` −Mk < ` holds for all` if it holds for ` = 1, 2, . . . , L + 1. Hence equation (103)
shows thatpL is the probability thatδ0 be equal to 1. We may write equivalentlypL = 〈δ0〉,
where the average is on all random sequencesM1, . . . ,ML. But since allδk have the same
distribution, hence the same average, we also have

pL = 1

L + 1

L+1∑
k=1

〈δk〉 = 1

L + 1

〈 L+1∑
k=1

δk

〉
. (106)

We consider now the sum on theδk in the last member of the above equation. The condition
for δk to equal 1 may be rewritten as

j −Mj > k −Mk for all j = k + 1, . . . , k +L + 1. (107)

In the rangek 6 j 6 k +L + 1 the functionj −Mj has the initial valuek −Mk and the final
valuek + L + 1−Mk+L+1 = k −Mk + 1, where we used the definition (104). Ifδk = 1, then
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j−Mj > k−Mk+1 for allj = k+1, . . . , k+L+1, and this means thatδk+1 = . . . = δk+L = 0.
Hence

∑k+L
j=k δj can be equal only to 0 or to 1. We now prove that in fact it equals unity. For it to

be zero, allδj in the range of summation would have to vanish, whence we would haveδj = 0
for all j > k. There would then exist an increasing sequence{jr}∞r=0 (wherej0 = k) such that
the corresponding sequence{jr −Mjr }∞r=0 is nonincreasing. This, however, is in contradiction
with the fact thatj −Mj increases by 1 wheneverj is augmented byL + 1. It follows that∑k+L

j=k δk = 1, whence by equation (106) we obtainpL = 1/(L + 1) andIL = (L + 1)L−1/L!.
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